
Preparing for Coding InterviewsPreparing for Coding Interviews

Jack Dunn and Daisy ZhuoJack Dunn and Daisy Zhuo



Why are we talking about coding interviews?Why are we talking about coding interviews?
Most jobs you apply for will probably have some portion of the interview that
involves testing your programming ability
Especially at tech companies, the interview is almost exclusively based around
coding and not like a traditional interview at all
In a coding interview, you will typically be given a challenging problem and asked
to code up a solution over the course of the interview, typically in a text editor or
on a whiteboard.



What makes a coding interview di�erent to a normal interview?What makes a coding interview di�erent to a normal interview?
The biggest difference to a normal interview is that if you are not prepared, you
will probably perform poorly
Coding interviews are closer to an exam, they can and should be studied for in
order to maximise your chance of success



How do you prepare for a coding interview?How do you prepare for a coding interview?
There are three important aspects to your preparation:

1. Solid knowledge of the theory (data structures and algorithms)
2. Knowing how to approach and behave in the interview
3. Practice!



Overview of TodayOverview of Today
Big-O notation
Arrays and strings
Linked lists
Stacks and queues

Break

Recursion and dynamic programming
Trees and graphs
Sorting
Overview of the coding interview
Mock interviews and interview question practice



Big-O NotationBig-O Notation



Which algorithm is fastest?Which algorithm is fastest?
For a given problem, there might be multiple valid solution approaches.

How are we going to decide which is best for our use case?

We could try each method out and choose the fastest?

We need a way of determining the ef�ciency of an algorithm without needing to implement
it



Big-O notationBig-O notation
Big-O notation is the typical way to measure the complexity of an algorithm

We measure how the algorithm performance scales with respect to the size of the input. It
provides a worst-case analysis of the algorithm.

We typically measure two aspects of performance:

time complexity (how long does it take to run?)
space complexity (how much memory space does it require?)

Examples (all for time complexity and an input of size ):

 means the time taken can be as much as a linear function of 
 means the time taken can be as much as a linear function of 

 means the time taken is independent of 

n

O(n) n
O(log n) log n

O(1) n



Some big-O examplesSome big-O examples
Finding the minimum element of an array:

In [ ]:

Time complexity is  (have to check each value once)
Space complexity is 

Calculating 1-norm of square matrix:

In [ ]:

Time complexity is 
Space complexity is 

minval = float('inf') 
for val in array: 
   minval = min(minval, val) 

O(n)
O(1)

total = 0 
for i in xrange(n): 
   for j in xrange(n): 
       total += abs(X[i][j]) 

O( )n2

O(1)



Simplifying big-OSimplifying big-O
When we use big-O, we always reduce the notation into its simplest form. We only care
about measuring how the algorithm scales with the input size, not calculating the exact
complexity as a function of input size.

Calculating min and max of array:

In [ ]:

Even though there are  operations here, the time complexity is still  - we ignore the
constant factors

minval = +float('inf') 
maxval = -float('inf') 
for val in array: 
   minval = min(minval, val) 
   maxval = max(maxval, val) 

2n O(n)



Calculating 1-norm of square matrix and sum of diagonals:

In [ ]:

The number of operations is  which we reduce to 

total = 0 
diag = 0 
for i in xrange(n): 
   for j in xrange(n): 
       total += abs(X[i, j]) 
   diag += X[i, i] 

O( + n)n2 O( )n2



Choosing an algorithm using big-OChoosing an algorithm using big-O
The main purpose of big-O is to compare different approaches.

Suppose we want to �nd the position of a speci�ed value in an array. Our simplest approach
is simply to loop over the array until we �nd the value we are looking for:

In [ ]:

Worst-case, we have to iterate over the entire array to �nd our value, so the time
complexity is 

Can we do better?

What if we knew the array was pre-sorted?

for (i, val) in enumerate(array): 
   if val == searchval: 
       break 

O(n)



If the array is sorted, we can use a binary search

We examine the middle element of the array. If it matches, we are done. If it's less than our
search value we search the upper half, otherwise we search the lower half. This proceeds
recursively until we �nd our target.

What's the time complexity of this?

At each step, we divide the search space in half. This means with  iterations we can search 
 elements. Therefore we need , which gives  so the time complexity is 

This approach should be much faster, especially as  grows large!

k

2k > n2k k > log n

O(log n)

n



Arrays and StringsArrays and Strings



Arrays, strings, and related data structuresArrays, strings, and related data structures
Arrays and strings are probably the most common data structures. Questions about these
can typically be used interchangeably in interviews as a string is basically just an array of
characters for practical purposes.

Hash tables (or dictionaries) are also very common, and are used to create a mapping from
key to value pairs. They are very useful because they have  lookup to retrieve the value
for a given key, whereas we saw that checking membership of an array will typically take 

 time. A variant of these is the hash set (or set) which only stores keys.

Array lists are resizable arrays (like list in python) that can grow as you add entries. The
typical way these are implemented are as �xed-size arrays that are doubled in size when
more space is needed (by creating another array of the new size and copying the old data
over).

O(1)

O(n)



Example question 1Example question 1
Implement an algorithm to determine if a string has all unique characters.

What's the simplest answer you can come up with?

Could a dictionary or set help?

As a simple solution, we can compare each character to every other character in the string,
which would take  time.

We could also use a hash set to keep track of which characters in the string we have seen
before and return false if we encounter a character that's already shown up.

O( )n2



In [ ]: def is_unique(s): 
   d = set() 
   for char in s: 
       if char in d: 
           return False 
       else: 
           d.add(char) 
   return True 



Example question 1Example question 1
Implement an algorithm to determine if a string has all unique characters.

What if you cannot use additional data structures? Can we do better than ?

How else can we �gure out if there are multiples of a character?

If we can modify the input string, we can sort it at a cost of . This would turn
"abcbda" into "aabbcd", and then we can simply loop over the string and check for doubles in

 time.

O( )n2

O(n log n)

O(n)



Example questionExample question
Write a function to check if a given string is a permutation of a palindrome.

Think about the de�ning characteristics of a palindrome

Could a dictionary help?

Let's think about it. For a string to be a palindrome, it needs to read the same forward and
backward. This means that other a possible middle letter, every letter appears twice.

This means we just need to check if there is more than one letter that is used an odd
number of times.

What's the easiest way to count? We can use a dictionary to keep track of the counts



In [ ]:

What's the complexity of this?

def is_palindrome(s): 
   counts = dict() 
   for char in s: 
       if not char in counts: 
           counts[char] = 0 
       counts[char] += 1 
   found_odd = False 
   for char_count in counts.itervalues(): 
       if char_count % 2 == 1: 
           if found_odd: 
               return False 
           else: 
               found_odd = True 
   return True 



Example question 3Example question 3
Write an algorithm that takes in an  x  matrix and for any element of the matrix that is
zero, sets the entire row and column containing that element to 0

What's the simplest approach?

We can just loop over the matrix and start processing any zeros we �nd. Are there any
issues with this?

What if we use a matrix to store the positions of any zeros before we modify?

What is the time complexity of this? Can we do better?

Can we do it without needing  space?

m n

O(mn)



We can just track the columns and rows that have any zero in them, and then �nish by
zeroing these out

In [ ]: def set_zeros(mat): 
   m = length(mat) 
   n = length(mat[0]) 
    
   rows = [False for _ in xrange(m)] 
   cols = [False for _ in xrange(n)] 
    
   for i in xrange(m): 
       for j in xrange(n): 
           if mat[i][j] == 0: 
               rows[i] = True 
               cols[j] = True 
                
   for i in xrange(m): 
       if rows[i]: 
           for j in xrange(n): 
               mat[i][j] = 0 
   for j in xrange(n): 
       if cols[j]: 
           for i in xrange(m): 
               mat[i][j] = 0 
                
   return mat     



Linked ListsLinked Lists



Intro to linked listsIntro to linked lists
Linked lists are a data structure used to represent a sequence of nodes

A singly-linked list has links from each node to the next in the chain

A doubly-linked list has links in both directions



Implementing a linked listImplementing a linked list
It's easy to implement a linked list ourselves. This is a singly-linked list:

In [1]:

We might also want to delete a speci�ed node:

class Node:     
   def __init__(self, data): 
       self.data = data 
       self.next = None 
        
   def append(self, data): 
       end = Node(data) 
       current = self 
       while current.next: 
           current = current.next 
       current.next = end 



In [3]: def delete_node(head, data): 
   current = head 
    
   # First node is deleted 
   if current.data == data: 
       return current.next 
    
   while current.next: 
       if current.next.data == data: 
           current.next = current.next.next 
           return head 
       current = current.next 
        
   return head 



Example question 1Example question 1
Write a function that removes duplicate nodes from an unsorted linked list.

How can we track if we have seen a particular node before?

What if you use a dictionary or set to track which nodes have been visited?

In [ ]:

What's the complexity of this?

def remove_dups(node): 
   visited = set() 
   previous = None 
    
   while node: 
       if node.data in visited: 
           # We have seen this before, remove it 
           previous.next = node.next 
       else: 
           visited.add(node.data) 
           previous = node 
       node = node.next 



How about if we are not allowed to use any extra storage space? Can we still remove the
duplicates?

We can loop over the list and at each node scan through the remainder of the list for any
duplicates of the current value

In [ ]:

What's the time and space complexity here?

def remove_dups(node): 
   while node: 
       # Scan ahead for duplicates 
       future = node 
       while future.next: 
           if future.next.data == current.data: 
               future.next = future.next.next 
           else: 
               future = future.next 
       # Move to next node 
       node = node.next 



Example question 2Example question 2
Write a function that deletes a node in the middle (i.e. not the �rst or last node) of a singly-
linked list, given only access to that node.

Example: If the list is a->b->c->d->e->f and you are given node c, nothing is returned,

but the list should now look like a->b->d->e->f

If we are trying to delete c in the above example, we want it to look like d. How can we do

this?

We can simply copy the data and next �elds from d into c and we are done

In [7]: def delete_middle(node): 
   node.data = node.next.data 
   node.next = node.next.next 



Example question 3Example question 3
Given two singly-linked lists, determine if the two lists intersect and if so return the
intersecting node.

Would a dictionary or set help?

We could use a set to track which nodes appear in the �rst list and then traverse the second
list and stop when we �nd the �rst match in the set.

We can do better though, we don't need any extra data structures.

Let's think about what intersecting and non-intersecting lists would look like

Let's �rst worry about whether there is an intersection, we can �nd it later. How can we tell
if the lists intersect?

Observe that if the lists intersect, their tail is the same. How can we use this?



If the tail is the same, we can just traverse both lists and see if we end up at the same place.

Now we need to �nd the intersection point. Suppose the lists were the same length, how
would we �nd the intersection?

If they were the same length, we could just traverse the lists at the same time until we found
the �rst match.

How would this generalize to lists of different lengths?

If we know the difference between the lengths of the lists, can we use that?

We can just move ahead in the longer list by the length difference, and then advance each
list together until we �nd the �rst match



In [ ]:

What's the time complexity here?

def length_and_tail(node): 
   length = 1 
   while node.next: 
       length += 1 
       node = node.next 
   return length, node 

def find_intersection(node1, node2) 
   length1, tail1 = length_and_tail(node1) 
   length2, tail2 = length_and_tail(node2) 
    
   if tail1 != tail2: 
       return None 
    
   if length1 > length2: 
       longer = node1 
       shorter = node2 
   else: 
       longer = node2 
       shorter = node1 
    
   for _ in xrange(abs(length1 - length2)): 
       longer = longer.next 
        
   while longer != shorter: 
       longer = longer.next 
       shorter = shorter.next 
        
   return longer 



Stacks and QueuesStacks and Queues



Intro to StacksIntro to Stacks
A stack is a data structure that has the following operations.

isEmpty(): Returns true if the stack is empty, false otherwise.
push(s): Inserts item s to the top of the stack.
pop(): Removes and returns the item at the top of the stack.

All operations of a stack are assumed to take  time.O(1)





Implementing a StackImplementing a Stack
A stack can be implemented using a singly-linked list.

The head of the linked list contains the top item of the stack. The next node in the linked list
contains the second-to-top element, and so on.

For example, if we pushed 1, then 2, then 3, our linked list would be 3->2->1.

In [18]: class Stack:     
   def __init__(self): 
       self.top = None 
        
   def isEmpty(self): 
       return not self.top 
    
   def push(self, data): 
       new_top = Node(data) 
       new_top.next = self.top 
       self.top = new_top 
    
   def pop(self): 
       if not self.isEmpty(): 
           data = self.top.data 
           self.top = self.top.next 
           return data 
       return None 



Example: Adding size to stackExample: Adding size to stack
Create a new stack data structure, called NewStack, which in addition to the normal

functions of a stack has an additional method called size(), which returns the current

number of elements in the stack. We can assume that we have access to a Stack data
structure, which implements isEmpty(), push(data), and pop() each in  time.

Each time size() is called, we could pop all the items out of the stack into a second stack,

and count as we go. Then, since the second stack has the items in reverse, we would pop the
items out of the second stack and push them back into the �rst stack. This would take O(n).

Can this be done faster?

Better idea is to introduce a new variable n, which stores the number of elements in the

stack.

Each time we push an element into the stack, we increase n by one. Each time we pop an

element from the stack, we decrease n by one.

O(1)



In [ ]: class NewStack:     
   def __init__(self): 
       self.stack = Stack() 
       self.n = 0 
        
   def isEmpty(self): 
       return self.stack.isEmpty() 
    
   def push(self, data): 
       self.stack.push(data) 
       n = n + 1 
        
   def pop(self): 
       self.stack.pop() 
       n = n - 1 



Intro to QueuesIntro to Queues
A queue is a data structure that mimics a line at a store. The order that the items are
removed from the queue is the same as the as the order in which they were added.

isEmpty(): Returns true if the queue is empty, false otherwise.
enqueue(s): Inserts item s to the end of the queue.
dequeue(): Removes and returns the item at the beginning of the queue.

All operations of a queue are assumed to take  time.O(1)



Implementing a QueueImplementing a Queue
A queue can also be implemented using a singly-linked list, with new items added to the tail
of the linked list.

In [19]: class Queue:     
   def __init__(self): 
       self.first = None 
       self.last = None 
        
   def isEmpty(self): 
       return not self.first 
    
   def enqueue(self, data): 
       if not self.first: 
           self.last = Node(data) 
           self.first = self.last 
       else: 
           self.last.next = Node(data) 
           self.last = self.last.next 
    
   def dequeue(self): 
       if not self.isEmpty(): 
           data = self.first.data 
           self.first = self.first.next 
           return data 
       return None 



Example question 1Example question 1
Create an implementation of Queue which is implemented using two stacks.

We can use one stack to push in the incoming items. But, the stack will be in reversed order
from that of a queue.

How can we make use of the second stack?

Let our stacks be called s1 and s2.

Each time we perform enqueue(data), we push the data into s1.

To perform dequeue(data), we want the bottom element of s1. We can use the second

stack to reverse the order of the elements by popping elements from s1 and pushing into 

s2. After we see the bottom element, we return to s1 by popping the elements from s2
back into s1.

This implementation results in enqueue(data) taking  and dequeue() taking .

This is slow if we repeatedly call dequeue().

O(1) O(n)



A better idea is to use a lazy approach, where we move the elements from s1 into s2 only

when s2 is empty. In this approach, s1 has the newest elements on top and s2 has the

oldest elements on top.

When we dequeue an element, we want to remove the oldest element, so we remove the
top element of s2.

If s2 is empty, we move all of the elements from s1 into s2 to reverse the order.

In this approach, each element is moved from s1 into s2 at most once!



In [20]: class Queue: 
   def __init__(self): 
       self.s1 = Stack() 
       self.s2 = Stack() 
    
   def isEmpty(self): 
       return self.s1.isEmpty() and self.s2.isEmpty() 
    
   def enqueue(self,data): 
       # Push onto s1, which always has the newest elements 
       # on top 
       self.s1.push(data) 
    
   def dequeue(self): 
       if not self.isEmpty(): 
           # If s2 is empty, move the elements of s1 into 
           # s2 ino order to reverse the order. 
           if self.s2.isEmpty(): 
               while not self.s1.isEmpty(): 
                   self.s2.push(self.s1.pop()) 
            
           # Return the top element of s2, which is has  
           # the oldest element on top 
           return self.s2.pop() 
       return None 



RecursionRecursion



Introduction to RecursionIntroduction to Recursion
Terminology: In computer science, a distinction is made between recursion and dynamic
programming.

A function is said to be recursive if its code consists of calling itself.



Example: SortingExample: Sorting
Given a list l of  numbers, a basic task is sorting the list.

[1,2,5.5,2] -> [1,2,3,5.5]

We will see a fundamental recursive sorting algorithm called merge sort.

The idea of merge sort is the following: divide the list in half, sort each half separately, then
merge the two sorted lists together.

[1,6,5,3,7,2,8,4] -> [1,6,5,3] [7,2,8,4] -> [1,3,5,6] 
[2,4,7,8]

n



In [65]:

Now, use recursion to sort the left and right sides.

# merges two sorted lists 
def merge(l_left,l_right): 
   l = [] 
   i_left = 0 
   i_right = 0 
    
   # Repeatedly add the min of l_left[i_left] and l_right[i_right] 
   # to l 
   while i_left < len(l_left) and i_right < len(l_right): 
       # Choose the minimum of l_left[i_left] and l_right[i_right] 
       if l_left[i_left] <= l_right[i_right]: 
           l.append(l_left[i_left]) 
           i_left += 1 
       else: 
           l.append(l_right[i_right]) 
           i_right += 1 
            
   # Add remaining list to end of l 
   while i_left < len(l_left): 
       l.append(l_left[i_left]) 
       i_left += 1 
   while i_right < len(l_right): 
       l.append(l_right[i_right]) 
       i_right += 1         
   return l 



Running time of merge sortRunning time of merge sort
The running time  of mergesort on a list of size n is found from the following:

The  comes from sorting the left and right sides. The  amount of additional work
comes from merging the left and right sides back together. To try to put  is closed form,
let's try unrolling the recursion by replacing  with its recursive de�nition.

Let's unroll one more time, by replacing .

We will have to keep unrolling into we get to . This means we will need to unroll 
times, where , which implies that . Thus,

T(n)

T(n) = {
1

2T(n/2) + n

if n = 1

if n > 1

2T(n/2) n
T(n)

T(n/2)

T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n

= 4T(n/4) + 2n

T(n/4)

T(n) = 4(2T(n/8) + n/4) + 2n

= T(n/ ) + 3n23 23

T(1) t
n/ ≈ 12t t ≈ nlog2



In general, this is the best possible running time for a sorting algorithm.

T(n) ≈ T(1) + (n)n2 nlog2 log2

= n + n nlog2

= O(n log n)



Example: binary searchExample: binary search
Implement a recursive version of binary search that takes a sorted list l of  numbers and a

number x and returns True if x is in l. What is the running time of your algorithm?
n



In [46]:

Running time of Running time of binary searchbinary search
Let  be the running time of binary search.

# Option 1: Recursive approach 
def binarySearchRecursive(l,x,low,high): 
   if low > high: 
       return False 
   mid = (low + high) / 2 
   if l[mid] < x: 
       return binarySearchRecursive(l,x,mid+1,high) 
   elif l[mid] > x: 
       return binarySearchRecursive(l,x,low,mid-1) 
   else: 
       return True 

# Option 2: Iterative approach 
def binarySearchIterative(l,x): 
   low = 0 
   high = len(l) - 1 
   while low <= high: 
       mid = (low + high) / 2 # Rounds down to nearest integer 
       if l[mid] < x: 
           low = mid + 1 
       elif l[mid] > x: 
           high = mid - 1 
       else: 
           return True 
   return False 

T(n)



T(n) = T(n/2) + 1

= T(n/ ) + 222

= T(n/ ) + 323

⋮

= O( (n))log2



Example: Search in rotated listExample: Search in rotated list
Suppose we had a sorted list of unique numbers, but has been rotated an unknown amount.

Example: [1,3,4,6,8] -> [6,8,1,3,4] Write an algorithm that �nds an

element x in the list. What is the running time of your algorithm?

We could check the left, right and midpoint values in the list.

[2,3,4,0,1]
[3,4,0,1,2]

It must be the case that the breakpoint occurs in either the left or right side. Thus, one side
of the list must be sorted.

Can we determine which side is sorted just by looking at the left, middle, and right values?

If the middle value is strictly greater than the left side, then the breakpoint must occur in
the right side.

If the middle value is strictly less than the left side, then the breakpoint must occur in the
right side.



g

In [64]:

By same reasoning as before, the running time is .

def search(l,x,left,right): 
   mid = (left + right) / 2 
    
   # Base cases 
   if l[mid] == x: 
       return True 
   if right < left: 
       return False 
    
   # Recursive case 
   if l[left] < l[mid]: 
       # The breakpoint occurs on the right side. 
       if x >= l[left] and x < l[mid]: 
           return search(l,x,left,mid-1) # Search the left side 
       else: 
           return search(l,x,mid+1,right) 
   else: 
       # The breakpoint occurs on the left side 
       if x > l[mid] and x <= l[right]: 
           return search(l,x,mid+1,right) 
       else: 
           return search(l,x,left,mid-1) 

O(log n)



Dynamic programmingDynamic programming



Introduction to Dynamic programmingIntroduction to Dynamic programming
Recall that the �bonacci sequence is de�ned as f(1),f(2) = 1 and f(n) = f(n-1) + 
f(n-2) otherwise. Then, the �bonacci sequence f can be implemented as follows.

In [41]: def f(n): 
   if n == 1 or n == 2: 
       return 1 
   else: 
       return f(n-1) + f(n-2) 



The running time of this function can be shown to be .

We observe that the recursion recomputes the same subproblems! For example, the
subproblems for  (which are  and ) and the subproblems for 
(which are  and ) overlap at .

To improve the speed of our algorithm, we save the results of the overlapping subproblems,
so we only have to compute each of them once. This is referred to as dynamic programming.

Speci�cally, we can create a list  of length , where  stores the value of . We then
start at  and �ll in the list for increasing values of . This process of storing the results of
the subproblems in some data structure is called memoization!

In [67]:

The running time of the dynamic programming approach is the time required to populate
the array, which is .

O( )2n

f (n) f (n − 1) f (n − 2) f (n − 1)

f (n − 2) f (n − 3) f (n − 2)

l n l[i] f (i)

l[1] i

def f(n): 
   l = [0,1,1] 
   for i in xrange(3,n+1): 
       l.append(l[i-1]+l[i-2]) 
   return l[n] 

O(n)



Example: Running up stairsExample: Running up stairs
A child is running up a staircase containing  steps. The child can hop either 1 step, 2 steps,
or 3 steps at a time. Write an algorithm steps(n) which returns the number of different

ways the child can get up the staircase. What is its running time?

In [85]:

Running time is the time required to populate a -length array, where each element

We could write steps(n) recursively.

How do we solve this with dynamic programming?

n

steps(n) =

⎧

⎩
⎨
⎪
⎪

1

2

4

steps(n − 1) + steps(n − 2) + steps(n − 3)

if n = 1

if n = 2

if n = 3, (1+1+1,1+2,2+1

if n ≥ 4

# Array of length n 
def steps(n): 
   l = [1,2,4] 
   for i in xrange(3,n): 
       l.append(l[i-1]+l[i-2]+l[i-3]) 
   return l[n-1] 

O(n)



requires  time to compute. Thus, the running time is .O(1) O(n)



Example questionExample question
Implement a function maxSubset(l) that takes in a list l of real numbers (some of which

may be negative) and �nds the continguous subset with the greatest sum.

For example:

maxSubset([1,2,-1]) should return 3.

maxSubset([2,-1,2]) should return 3.

What is the running time of the algorithm?

Could compute the sum of every subset from index  to index  as follows:

The running time would be exponential without dynamic programming.

We could use dynamic programming as follows:

i j

SubsetSum(l, i, j) = {
0

l[i] + SubsetSum(i + 1, j)

if j < i

otherwise



In [105]:

Running time is .

Can we do better?

In order to do better than , we cannot look at each of the 

subsets. We have to do something else!

def maxSubset(l): 
   SubsetSum = {} 
    
   # Compute every subset of size 1 
   for i in range(len(l)): 
       SubsetSum[(i,i)] = l[i] 
    
   # Compute every subset of size 2, 3, 4,... 
   for k in xrange(1,len(l)): 
       for i in xrange(0,len(l)-k): 
           SubsetSum[(i,i+k)] = l[i] + SubsetSum[(i+1,i+k)] 
    
   # Find the maximum subset over all the subsets 
   max_subset = 0 
   for i in xrange(0,len(l)): 
       for j in xrange(i,len(l)): 
           max_subset = max(max_subset, SubsetSum[(i,j)]) 
   return max_subset 
    

1 = O( )∑n
i=1 ∑

n−1
k=1 n2

O( )n2 1 = O( )∑n
i=1 ∑

n
j=i n2



What if we just considered the max subset that begins at each index.

Let maxSubsetEndingAt(i) denote the maximum subset that ends at l[i].

The maximum subset must end at some index . So, we just need to check the value of 
maxSubsetEndingAt(i) for each i to solve the problem.

In [108]:

In [111]:

maxSubsetEndingAt(i) = {
max{l[0], 0}

max{l[i], maxSubsetEndingAt(i − 1) + l[i]}

if i = 0

if i ≥ 1

i

def maxSubset(l): 
   maxSubsetEndingAt = [max(l[0],0)] 
   for i in xrange(1,len(l)): 
       maxSubsetEndingAt.append(max(l[i],maxSubsetEndingAt[i-1]+l[i])) 

   max_subset = 0 
   for i in range(len(l)): 
       max_subset = max(max_subset, maxSubsetEndingAt[i]) 
   return max_subset 

maxSubset([2,-8,3,-2,4,-10]) 

Out[111]: 5



Binary treesBinary trees



Introduction to binary treesIntroduction to binary trees
Questions involving the binary tree data structure are very popular in tech interviews, and
can be challenging and varied!

A binary tree is a data structure consisting of a collection of nodes (starting at a root node),
where each node consists of a value (data), together with a directed edges to at most two

nodes (the "left child" and "right child"), with the additional conditions that no two edges
point to the same node and no edge points to the root.

The following is a binary tree consisting of  nodes, where the root node has data = 
2.

The tree with root 7 and the tree with root 5 are called the left subtree and right subtree of
node 2.

n = 9



The height of a tree is equal to the number of levels in the tree.



Implementing a binary treeImplementing a binary tree
A binary tree is implemented similarly to a linked list. The main difference is that each node
has two outgoing edges

In [42]: class Node:     
   def __init__(self, data): 
       self.data = data 
       self.left = None 
       self.right = None 



Binary search treeBinary search tree
A binary tree is a binary search tree if it stores real numbers and the root satis�es the
following properties:

The root's value is larger than every node in the left subtree.
The root's value is smaller than every node in the right subtree.
The left and right subtrees are binary search trees

Example: �nding closest dataExample: �nding closest data



Given the root of a binary search tree and a value x, implement an algorithm called 

find_closest(root,x), which returns the closest point in the binary search tree to x.

What is its running time?

In [3]:

Suppose the tree has  nodes and  levels.

In the worst case, find_closest(root,x) has to travel down  levels.

def find_closest(root,x): 
   if root == None: 
       return None 
    
   # The current closest to x is root.data 
   closest = root.data 
    
   # If x is larger than root.data, there might  
   # be a closer node on the right subtree 
   if x > closest and root.right != None: 
       right_closest = find_closest(root.right) 
       if abs(right_closest - x) < abs(closest - x): 
           closest = right_closest 
    
   # If x is larger than root.data, there might  
   # be a closer node on the right subtree 
   if x < closest and root.left != None: 
       left_closest = find_closest(root.left) 
       if abs(left_closest - x) < abs(closest - x): 
           closest = left_closest 
    
   return closest 

n ℓ ≤ n

ℓ



Balanced binary search treeBalanced binary search tree
A binary search tree is called balanced if, for each node in the tree, the heights of the left and
right subtrees of that node differ by at most 1.

This is an unbalanced binary search tree.





A self-balanced binary search tree is a binary search tree that performs the following
operations in a way that maintains the BST properties and keeps the tree balanced.
Examples include AVL and Red-Black trees. It has the following operations.

insert(root,data): Inserts a new node with value data into the binary search tree

in time .
remove(root,data): Remove a node with key data in time .

search(root,data): Search for the key data in the binary search tree in time (?).

How long should we expect search(root,data) to take?

A balanced BST will keep the depth of the tree at . Thus, using the same
searching algorithm as before, searching can be done in .

O(log n)

O(log n)

ℓ = O(log n)

O(ℓ) = O(log n)



Question: implementing a dictionaryQuestion: implementing a dictionary
Can a balanced binary search tree be used as a dictionary? If so, what are the pros and cons
versus a hash table?

Yes, if the keys are numbers. Rather than the root.data being just a number, we can have 

root.data = (key,value), where the key is what is used for the BST property, and

the value is the information mapped to by the key.

Compared to hash tables, self-balanced binary search trees are slower, as insert, remove,
and search require  time instead of  time.

However, binary search trees make it easy to iterate through all of the keys in the
dictionary.

Also, given a key, we can �nd the closest entry in the dictionary if the dictionary is

implemented as a BST, which we cannot do with a hash table.

O(log n) O(1)



Example: checking if a tree is a BSTExample: checking if a tree is a BST
Implement an algorithm isBST(root) that takes a node root and returns True if root is

the root of a binary search tree (BST). What is the running time of the algorithm?

What information do we need in order to determine whether root is the root of a BST?

Need to know the following:

Whether the left and right subtrees are BSTs.
The maximum value in the left subtree.
The minimum value in the right subtree.

If root.data is larger than the maximum value in the left subtree, then it is larger than

every element in the left subtree.

If root.data is smaller than the minimum value in the right subtree, then it is larger than

every element in the right subtree.

Can we formulate this information recursively?



Then, isBST(root) = True if root is None or if:

isBST(root.left) = True
isBST(root.right) = True
root.data > maxVal(root.left)
root.data < minVal(root.right)

maxVal(root)

minVal(root)

= {
−∞
max{root. data, maxVal(root. left), maxVal(root. right)

if root is

otherwis

= {
+∞
min{root. data, maxVal(root. left), maxVal(root. right)

if root is 

otherwise



In [113]: def maxVal(root): 
   if root == None: 
       return -1e9 
   else: 
       max_val = root.data 
       max_val = max(max_val, maxVal(root.left)) 
       max_val = max(max_val, maxVal(root.right)) 
       return max_val 

def minVal(root): 
   if root == None: 
       return 1e9 
   else: 
       min_val = root.data 
       min_val = min(min_val, minVal(root.left)) 
       min_val = min(min_val, minVal(root.right)) 
       return min_val 
    
def isBST(root): 
   if root is None: 
       return True 
   if (isBST(root.left) and  
       isBST(root.right) and 
       maxVal(root.left) < root.data and 
       minVal(root.right) > root.data): 
       return True 
   return False 



What is the running time?

Assume that root is the root of a tree with  nodes. Then, the running times of 

maxVal(root) and minVal(root) are both , since we have to visit every node

below the root.

Thus, the running time T(root) of isBST(root) is

Suppose all of the nodes are in the left subtree, meaning that the tree is basically a linked
list. In that case,

n

O(n)

T(root) = n + T(root.left) + T(root.right)

T(root) = n + T(root.left)

= n + (n − 1) + T(root.left.left)

⋮

= i∑
i=1

n

= O( )n2



Use dynamic programming, by simply storing the values of maxVal(root), 

minVal(root), and isBST(root) in the node itself!



In [ ]: def populateMaxVals(root): 
   if root != None: 
       populateMaxVals(root.left) 
       populateMaxVals(root.right) 
       root.max_val = root.data 
       if root.left != None: 
           root.max_val = max(root.max_val, root.left.max_val) 
       if root.right != None: 
           root.max_val = max(root.max_val, root.right.max_val)    

def populateMinVals(root): 
   if root != None: 
       populateMaxVals(root.left) 
       populateMaxVals(root.right) 
       root.max_val = root.data 
       if root.left != None: 
           root.max_val = min(root.max_val, root.left.max_val) 
       if root.right != None: 
           root.max_val = min(root.max_val, root.right.max_val) 

def populateIsBST(root): 
   # Assume that the max and min values have already been populated 
   if root != None: 
       populateIsBST(root.left) 
       populateIsBST(root.right) 
       root.isBST = True 
       if root.left != None: 
           root.isBST = root.isBST and root.left.isBST 
       if root.right != None: 
           root.isBST = root.isBST and root.right.isBST 
    
def isBST(root): 
   if root is None: 
       return True 
    
   populateMaxVals(root) 
   populateMinVals(root) 



Example questionExample question
You are enjoying a walk in the �elds and come across a leprechaun! The leprechaun has 
pots in a line, where each pot contains some known number of gold coins. These numbers
are stored in a list pots. For example, if pots = [1,6,0,0,3,100,3], then the leftmost

pot has 1 gold coin and the rightmost pot has 3 gold coins.

The leprechaun proposes the following game. You can select to take the leftmost or
rightmost pot, and keep the gold coins inside of it. Afterwards, the leprechaun similarly
chooses the leftmost or rightmost of the (remaining) pots. This repeats until there are no
pots remaining.

You want to play optimally to maximize the sum of the gold pieces you obtain. We can
assume that the leprechaun also wants to maximize their number of gold pieces. Given the
pots l, write an algorithm myMove(pots) that returns whether we should select the left

or right pot.

n



Example question 2Example question 2
Suppose you are given an  array , where the -th element is obtained by A[i]
[j]. The array is binary, meaning that each A[i][j] either equals 0 or 1.

We are looking for the largest rectangle (by area) in the array formed (entirely) by 1's. For
example, the largest rectangle in the following array has area 4.

The largest rectangle (by area) in the following array has area 3 (the rectangle must be �lled
in).

Implement an algorithm LargestArea(A,m,n) that takes in an  binary array, and

returns the largest rectangle inside of it.

m × n A (i, j)

1

0

1

0

1

1

1

1

1

0

1

0

1

1

1

1

0

1

1

1

1

0

1

0

m × n



Approaching the InterviewApproaching the Interview

StrategiesStrategies
Simplest answer �rst
What is the best conceiveable runtime?
Simplify the problem
See if any data structure might �t
Can the problem be formulated recursively?
Test cases to check correctness

PreparationPreparation
Practice, practice, practice!
Do problems from "Cracking the Coding Interview"
Practice writing code on a whiteboard

The interviewer is more interested in seeing how you think, ask questions, and respond to
hints that whether you get everything right

In the real world, they aren't going to know the answer either, so it's important to
understand how you would behave in a team




